
Scalable IPv6 Prefix Generator for Benchmark 1

V6Gene: A Scalable IPv6 Prefix Generator for Route Lookup Algorithm

Benchmarki

Abstract-- Most conventional IPv4-based route lookup algorithms are no more suitable for IPv6

packet forwarding due to the significantly increased 128-bit-long address. However, as a result of

lacking of standard IPv6 route databases, it is hard to make benchmarks for the new generation

IPv6-based algorithms developing/evaluation. In this paper, based on the studies of initial IPv6

prefix distributions and the associated RFC documents, we originally develop a scalable IPv6 prefix

generator, called V6Gene, for IPv6-based route lookup algorithms benchmarking. According to the

RFCs and other associated standards, V6Gene generates IPv6 route prefixes from the initially

assigned LIR (Local Internet Registries) prefixes collected from the real world, simulating the

process of future IPv6 address block allocation from the LIRs to their subscribers. V6Gene is totally

flexible for generation of all kinds of route databases with different characteristics. It is simple for

implementation and can be easily integrated within other IPv6 benchmark tools/systems. V6Gene is

publicly available at: http://zheng_kai.home4u.china.com/paper/V6Gen.rar

Keywords--IPv6, Route lookup, Prefix generator, Benchmark

1 INTRODUCTION
i

With the rapid development of the Internet

applications and the explosion of the end users, the

available IPv4 addresses that can be allocated are

almost exhausted [1]. Though several approaches

i This work is supported by NSFC (No. 60173009 and
60373007), China 863 High-tech Plan (No.
2002AA103011-1 and 2003AA115110), China/Ireland
Science and Technology Collaboration Research Fund
(CI-2003-02) and the Specialized Research Fund for the
Doctoral Program of Higher Education of China (No.
20040003048).

have been made to temporally cope with the

problem ， such as NAT (Network Address

Translation), however due to its drawbacks of not

well supporting peer-to-peer applications and with

other security problems, it is widely/publicly

believed that there should be a new generation of

IP protocol to replace IPv4. IP Version Six (IPv6)

then emerge as the times require. It adopts a

128-bit address space, which provides about 296

times of available addresses more than that of

 2 J. Comp. Sci. & Tech.

IPv4. Besides that, IPv6 provides very good

supports for mobility and information security as

well. It also offers a better support for

QoS-Control than that of its counterpart, since its

packet header is far more flexible and can contain

more detailed information for flow/application

identification.

However, the change of the protocol itself,

especially the distinctively increased 128-bit

address, on the other hand brings quite a lot of

un-neglectable challenges for developing

networking infrastructures based on IPv6. For

instance, the performance of conventional route

lookup algorithms (i.e., both trie-based algorithms

[2][3][4][5] and TCAM-based schemes [6][7][8])

implemented in most current packet forwarding

devices are sensitive to the search key (i.e., IP

address) length, and, therefore, will distinctively

decrease when migrated to IPv6. This means that a

new generation of high performance route lookup

algorithms based on IPv6 should be developed

accordingly.

Yet, the major concern of this paper is not the

research of finding efficient route lookup

algorithms itself, but to develop a scalable

benchmarking tool for such algorithms

developments. Notice that in order to develop a

high performance and suitable route lookup

algorithm for next generation high speed packet

processing, one should first inspect the route

databases and make use of the characteristics of

the distribution, and then use the standard route

databases for benchmark and evaluate the

corresponding performance, as what most

researchers have done when they developed IPv4

route lookup algorithms [3] [4] [5] [6] [7] [8].

However, due to the following three reasons,

almost no real-world route databases can be utilize

for IPv6-based algorithm benchmark: 1) Since

IPv6 is in its initiation period, only a small portion

of address blocks are assigned/allocated up to now;

2) The currently assigned blocks are mostly LIRs

(Local Internet Registries, or Large ISPs) level

blocks, which means that the current IPv6 prefix

distribution should be quite different with its

future pattern which contain mainly end subscriber

level address blocks; 3) Most nowadays IPv6

based networking are for testing or experiment,

therefore, on the one hand relatively few

organizations provide their IPv6 route databases

for research, and on the other hand, though some

of them share their route databases [10][12], the

prefixes in such IPv6 route tables are somehow

local, i.e., without universality for research

purpose, such as benchmarking.

D. E. Taylor developed a policy rules generation

Scalable IPv6 Prefix Generator for Benchmark 3

tool, called ClassBench [19], for packet

classification benchmarking. The basic

observation is that although the real-world rule

databases are always not publicly available due to

security and confidentiality issues, the rule

databases owners may just provide the

corresponding profiles, called seed-files, of their

rule sets instead of the confidential database. And

then, based on such seed-files, the researcher may

use ClassBench to re-generate similar rule set for

benchmarking of classification algorithm

development.

In light of the idea of ClassBench, in this paper,

by thoroughly studies on large amount of

associated RFCs and other standards for IPv6, and

analysis on the characteristics of both current IPv4

prefix distribution and IPv6 initial prefix

distribution, we develop a scalable IPv6 prefix

generator, called V6Gene for route lookup

algorithm benchmarking. IPv6 route prefixes are

generated from real-world LIR level prefixes (i.e.

the LIR level prefixes are treated as seed-prefixes),

according to the configuration setup by the users.

V6Gen is totally flexible and can be easily utilized

in other IPv6 based integrated test bed or

benchmark systems.

The rest of the paper is organized as follows.

Section II provides the definitions of the terms and

parameters associated with the prefix generator.

Section III presents the analysis and observation of

the real world route databases and the studies of

the IPv6-related RFCs and standards. Section IV

presents the details of the prefix generator design.

Then a conclusion is drawn in Section V.

2 DEFINITIONS AND TERMS

2.1 Definition: Trie, Prefix Node, Internal Node,

Prefix Leaf

A Binary Trie is introduced to represent the

prefix space, with each node for a possible prefix.

The prefix of a route table entry defines a path in

the trie ending in some node, which is called the

Prefix Nodes in this paper. If a node itself is not a

prefix node but its descendants include prefix

nodes, we call it an Internal Node. We name a

prefix node as a Prefix Leaf if it has no

descendants prefix nodes.

Fig.1 depicts an example of the definitions

introduced above. For simplicity we suppose that

the address length is 7bits.

 4 J. Comp. Sci. & Tech.

Fig 1. An example routing table and the corresponding binary trie built from it.

2.2 Definition: Prefix Depth, Prefix Level

Depth of a prefix (node) is defined as the

number of its ancestor nodes in the prefix trie, and

Depth(i) of the prefix trie denotes the set of all

prefixes (node) with their depths equals i. Depth of

a prefix node is actually the same of the length of

the corresponding route prefix. For instance, in the

example of Fig.1 the depths of prefix node A, D,

and F are 0,4, and 6 respectively.

For a given prefix node n, there may be multi

paths from n to its multi descendant leaf nodes.

Among these paths, let Pmax be the one containing

the most prefix nodes. The number of prefix nodes

(excluding node n itself) in Pmax is called the

Prefix Level of prefix node n. And |Level(i)|

denotes the number of prefixes (nodes) with their

level equals i. It is actually a parameter

representing the level of a specific subnet

hierarchy. In the example of Fig.1 the level of

prefix node A, D and F are 2, 0 and 1 respectively.

And |Level(0)|=6, |Level(1)|=2, and |Level(2)|=1 .

2.3 Definition: Random Generating Ratio

(RGR), Generation Accuracy Tolerance (GAT)

2.3.1 Random Generating Ratio (RGR).

The prefix generation is a random process. As

will be introduced in the latter sections, general

speaking, the generator random generates IPv6

prefixes from specific seed prefixes collected from

real world, simulating the process of IPv6 address

block assignments, e.g., from the LIRs to small

subscribers. However notice that prefixes may also

be allocated from certain newly assigned LIRs, so

we also need to generate certain amount of IPv6

prefixes without regarding to the seed prefix file.

To make the generator flexible, we introduce the

parameter RGR: RGR is defined as the ratio of the

number of prefixes to be generated without

regarding to the seed prefix file to the number of

all prefixes to be generated. RGR represents the

Scalable IPv6 Prefix Generator for Benchmark 5

degree of relation of the generated prefix table to

the seed table.

2.3.2 Generation Accuracy Tolerance (GAT).

GAT is a vector, each sub-value of which is

defined as the tolerance of variance between a

specific parameter of generated route table and the

one setup by the user. The generation outcomes

should satisfy all constrains:

iiii PSPSPGGAT /|| −≤ , where iPG represents

each of the parameters of the generated table,

iPG represents each of the parameters setup by

the user. Such parameters include the number of

prefixes to generate, the number of total next hop

IP addresses in the table, etc. The reason of

introducing GAT is that the generated outcome

should satisfy more than one constrains setup by

the user. Note that some of them may conflict with

each others, so it can not be guaranteed that all

parameters be achieved, exactly.

3 FEATURES OF REAL-WORLD ROUTE PREFIX

DISTRIBUTIONS

3.1 Observation on Real-world IPv4 Prefix

Distribution

Study on IPv4 prefix distribution should be very

helpful in estimating future IPv6 characteristics,

because of two main considerations: 1) The

topology of the Internet should not be largely

altered during the migration from IPv4 to IPv6; 2)

There are many things in common of IPv4 and

IPv6 address block allocation/assignment.

TABLE 1. Four real-world route tables. The SD_NAP table
was a small one with no more than 4K prefixes; The
Mae-West table from the IPMA project was a very famous
table with middle-size; The Route-view and RRC06 tables
are fairly large BGP tables in the real world.

Name of Data Base Date Number of
Prefixes

Number of
Next Hop

Mae-West [13] 2001-03 33,960 45
SD_NAP [14] 2001-06 3,935 2
Route View [9] 2003-10 123,384 4

RRC06 [11] 2003-11 131,372 35

In what follows, we provide some observation
on real-world IPv4 prefix distributions. In order to
ensures that the characteristics discussed here are
not specific to particular routers or time interval,
we pick four typical route tables collected from
four famous route service projects [9][11][13][14],
which are both spatially and temporally widely
distributed, as described in Table I.

3.1.1 Distribution on Prefix Lengths and Prefix
Depth

As is shown in Fig. 2 (note the logarithmic scale

on the y-axis), despite the elapse of time, the

prefix length distributions keep a relatively stable

form: The historical 24-bit Class C Prefix still

dominates the number of entries (about 50%

alone); the ratio of prefixes longer than 24-bit is

very tiny (less than 1% in each of the four cases);

over 90% of the prefixes are between 18-bit and

24-bit.

 6 J. Comp. Sci. & Tech.

Fig 2. Prefix distributions on prefix length. Please note the
logarithmic scale on the y-axis. We find that the distribution
is extremely uneven across the scope of prefix length and
intervals.

3.1.2 Distribution on Prefix Level

Fig.3 depicts the distribution on prefix level. We

can see that the ratio of prefix population

decreases logarithmically with the growth of

prefix level (note the logarithmic scale on the

y-axis). Most real-world IPv4 route databases are

with only five to six prefix levels and the majority

(e.g., over 90%) of the prefixes are in Level 0 (i.e.,

they are prefix leaves).

Fig 3. Prefix distributions on prefix level.

3.2 IPv6 Prefix Characteristics

 As is mentioned before, IPv6’s being in its

initiation period leads to the relatively few number

of available prefix databases that can be utilized

for study [1]. And its current distribution should be

quite different from its future patterns, according

to our studies on the RFCs and other associated

documents. In this sub-section, we first introduce

the initial IPv6 prefix distribution characteristics,

and then through a thorough survey of the

associated RFCs [15-18] and RIPE documents [1],

we estimate the “future-like” IPv6 prefix

distribution and come to some useful conclusions

for developing the IPv6 prefix generator.

3.2.1 Current (initial) IPv6 prefix distribution.

(a) On Length

 (b) On Level

Fig 4. Real-world (Initial) IPv6 prefix distribution. Please
note the logarithmic scale on the y-axis.

 Fig. 4(a) depicts the IPv6 prefix distribution on

prefix length of a real-world IPv6 global route

table (Route-View IPv6 route table, Data:

Scalable IPv6 Prefix Generator for Benchmark 7

2004-10-3, Size: 680 Prefixesii. [10]). We can see

that the majority are ‘/32’ prefixes, which is

referred to as the "initial IPv6 allocation blocks"

[1]. As mentioned in [1], this kind of IPv6 address

blocks are allocated to the LIRs who: 1) plan to

provide IPv6 connectivity to organizations to

which it will assign '/48's by advertising that

connectivity through its single aggregated address

allocation; 2) have a plan for making at least 200

‘/48’ assignments to other organizations within

two years (the last information is essential for the

IPv6 prefix generation, which will be introduced

shortly). Some even shorter prefixes (length from

16-31) were assigned to high-level subscribers

according to RFC 2374[15] before it was replaced

by RFC 3587 [18]. In RFC 2374 and RFC 2928

[16], IPv6 address blocks were organized in a

complex aggregatable hierarchy which includes

the TLA (Top Level Aggregation) ‘/16’ blocks,

sub-TLA blocks, NLA (Next Level Aggregation)

‘/48’ blocks, SLA (Site Level Aggregation) ‘/64’

blocks and the Interface Level address ('/128').

 Fig.4(b) depicts the IPv6 prefix distribution on

prefix level, where is very similar to the cases of

IPv4. And we can see that there are only four

prefix levels (i.e., subnet levels). This information

will be useful for V6Gene: A specific seed prefix

ii There are totally 6700 prefixes in the original database, however,
only 680 of them are unique (since the database may contain
identical route prefix announced by different source routers) .

may have only 2-3 levels of children prefixes.

3.2.2 Future IPv6 prefix distribution estimation

 RFC 3578 (up-to-dated) replaces RFC 2374 and

simplifies the aggregatable IPv6 address hierarchy.

Now there are only three levels of prefixes: the

Global Routing Prefix (4-48thbits. Note that the

1-3thbits of IPv6 unicast address should be ‘001’),

the Subnet ID (49-64th bits) and the Interface ID

(65-128thbits).

 According to RFC 3177 (IAB/IESG

recommendation on IPv6 address allocation to

sites) [17] and RIPE 267 [1], the IPv6 address

blocks should be allocated to subscribes following

these rules: 1) ‘/48’ in the general case, except for

very large subscribes, which could receive a ‘/47’

or multiple ‘/48s’; 2) ‘/64’ when it is known that

one and only one subnet is needed by design; 3)

‘/128’ when it is ABSOLUTELY known that one

and only one device is connecting. Also defined by

RFC 3177, "the middle 16 bits (i.e., 49-64th bit) of

an address indicate the subnet ID", since "the

operational benefits of a consistent width subnet

field were deemed to be outweigh the drawbacks"

[1]. This shows that a standard '/48s' address block

can be 'subnetted' into at most 16 levels, indicating

the subnet/prefix levels of practical IPv6 route

table will not be large. Note that there are even

more subnet levels under the CIDR IPv4 address

 8 J. Comp. Sci. & Tech.

allocation scheme, where the subnet ID may cover

from the 9th to 30th bit of the address.

 From the related recommendation of RFCs and

RIPE documents introduced above, we come to

some useful conclusions as follows, which may be

very useful for developing the prefix generator or

making a decision of parameter setup:

i. It is obvious but important that there is no

prefix with length between 64bit and 128bit

(excluding 64bit and 128bit).

ii. The majority of the prefixes should be the

‘/48s’, and ‘/64s’ the secondary majority. Other

prefixes would be distinctly fewer than the ‘/48s’

and ‘/64s’.

 iii. Future (or the near future) IPv6 address

blocks will be allocated to common subscribers

mainly from the current assigned LIRs. This is

essential for IPv6 prefix generating.

 iv. Though the address length is increase, the

levels of subnet/prefix would not be distinctively

scaled (e.g. only 4-5 levels), due to consistent

width subnet field.

4. V6GENE: THE IPV6 PREFIX GENERATOR

4.1 The Overall Processing Flow of V6Gene

Fig 5. The processing flow of the prefix generator.

Scalable IPv6 Prefix Generator for Benchmark 9

Given the number of prefixes to be generate, the

distribution on prefix length/level and the GAT

allowed, the program run iteratively as the

alteration of generation and modification, until the

constrains are all satisfied.

 Notice that part of the prefixes is generated

randomly, which means they are generation

without regarding the seed file. A mergence of the

two outcomes should be employed, including a

process to remove the redundant/invalid prefixes.

4.2 Details of V6Gene

4.2.1 Initiation

In this step, V6Gene will read in all the

configurations, including all the associated

parameters (i.e., number of prefixes, number of

distinct next-hop, and RAR), distribution

objectives (i.e., distributions on prefix length and

prefix level), generating constrains (i.e., GAT),

and the seed prefix file. Then V6Gene will first

check the seed database and prune the

invalid/redundant information (i.e., only keep the

unique LIR prefixes), for instance as mentioned

before, the seed prefix database collected from

certain providers may contain identical prefixes

announced by different sources. After that, based

on the seed file, V6Gene will construct a binary

trie, called the Seed Prefix Trie (SPT), which will

be utilized in the later steps.

4.2.2 Generating

In this step, V6Gene will simulate the IPv6

block allocation process, which includes two

parallel phases:

One is the simulation of address blocks

allocation from the LIRs to the ordinary

subscribers. V6Gene traverse the SPT: whenever

come to a seed prefix leaf, it will trigger the

generation function. This function generates a

specific number of prefixes (indicated by the

parameter RGR) according to the given

distribution on prefix length and prefix levels; all

the generated prefixes should have a same prefix,

i.e., the seed prefix. Then the function will

randomly assign forwarding information to each

prefix generated. Such information includes the

forwarding output port#, next hop IP addresses,

and so on.

The other phase is the random generation, which

is actually to simulate the process of IPv6 block

allocation from new LIRs (which do not currently

exist) to their subscribers. In this phase, a specific

number of prefixes (indicated by the parameter

RGR) will be generated without regarding to the

seed prefix file. Two sub-steps are included: First

to randomly generate LIR level prefixes, and then

to generate subscriber level prefix from them.

As mention before, a verification of the

 10 J. Comp. Sci. & Tech.

outcomes will be deployed after the generations,

to make sure that all the prefixes are unique and

with proper forwarding information. It is obvious

that some of the generated prefixes may be

removed in the verification process, and this may

lead to dissatisfaction of certain constrains, such

as the number of prefixes, etc. So another task of

the random generation phase is to make up for

such dissatisfaction by additionally generating a

number of prefixes. In V6Gene, generation,

verification and adjustment are triggered

iteratively, until all constrains are well satisfied.

4.2.3 Outputting

 In this step, V6Gene will collect all the

generated results and output them in compatible

format (with the seed prefix file, e.g., the

Route-View format [10]).

4.3 Some Discussions

 1) V6Gene is totally flexible and scalable.

Given different seed prefix sets, or configured

with different distributions or constrains, it can

generate route prefix table with different scale or

for different applications (e.g., for core level

routes with large BGP table or access level ones

with RIP table).

 2) For target distribution setup, the user may

refer to those collected from the IPv4 real-world

databases and estimated according to the RFCs.

They may also create their specific target

distribution.

 3) We implement V6Gene on a 1.8GHz Intel

Pentium IV-m laptop. The result shows that it

takes only a few (<10) seconds to generate (and

verify) over 130,000 IPv6 prefixes. This indicates

that the iteration within the process converges fast.

 4) All the inputs and outputs (i.e., interface) of

V6Gene are files, which shows that it can be

easily adopted to collaborate with other algorithm

evaluation tools or integrated within a IPv6

benchmark system.

5 CONCLUSION AND ONGOING WORKS

 In this paper, based on the studies of real-word

prefix distributions and the associated RFC

documents, we develop a scalable IPv6 prefix

generator, called V6Gene. Due to the insufficiency

of available real-world IPv6 route databases,

V6Gene would be very useful for providing

reliable and flexible benchmark for future IPv6

based application designing, e.g. IPv6 route

lookup algorithms. V6Gene generates IPv6 route

prefixes from the LIR prefixes collected from the

real-world, simulating the process of IPv6 address

block allocation from the LIRs to their subscribers.

It is totally scalable, simple for implementation,

and can be easily integrated within other IPv6

Scalable IPv6 Prefix Generator for Benchmark 11

benchmark system.

 The major ongoing researches of this work

includes 1) to extend V6Gene to make it support

more target distributions and parameters for

generation; 2) to extend V6Gene to make it

support policy rule generation, which would be

useful for IPv6 based packet classification

benchmark.

6 REFERENCE

[1] RIPE 267: APNIC, ARIN, RIPE NCC. IPv6

Address Allocation and Assignment Policy,

Document ID: ripe-267, January 2003, available at:

http://www.ripe.net/ripe/docs/ipv6policy.html

[2] D.R.Morrison. PATRICIA -- Practical

Algorithm to Retrieve Information Coded in

Alphanumeric. J.ACM, vol. 15, no.4, Oct.1968,

pp. 514-34.

[3] Stefan Nilsson and Gunnar Karlsson.

IP-Address Lookup Using LC-Tries. IEEE Journal

on Selected Areas in Communications, VOL. 17,

NO. 6, June1999.

[4] P. Gupta, S. Lin, and N. McKeown. Routing

Lookups in Hardware at Memory Access Speed.

Proc. of IEEE INFOCOM’98, San Francisco,

April 1998, pp. 1240-1247.

[5] M. Degermark, A. Brodnik, S. Carlsson, S.

Pink. Small Forwarding Tables for Fast Routing

Lookups. Proc. of ACM/SIGCOMM’97, Cannes,

France, pp. 3-14, Sep. 1997.

[6] H. Liu. Routing Table Compaction in Ternary

CAM. IEEE Micro, 22(1):58-64,

January-February 2002.

[7] F. Zane, G. Narlikar, A. Basu. CoolCAMs:

Power-Efficient TCAMs for Forwarding Engines.

IEEE INFOCOM’03, San Francisco,

http://www.ieee-infocom.org/2003/papers/02_01.P

DF.

[8] K. Zheng, C.Hu, H.Lu, and B.Liu. An Ultra

High Throughput and Power Efficient

TCAM-Based IP Lookup Engine. Proc. of IEEE

INFOCOM, April, 2004.

[9] IPv4 route database from the Route-view

Project (University of Oregon), available at:

http://archive.routeviews.org/bgpdata/.

[10] IPv6 route database from the Route-view

Project, available at: http://

archive.routeviews.org/route-views6/bgpdata/.

[11] IPv4 route database from the RRCC Project

(Routing Registry Consistency Check Project),

available at: http://www.ripe.net/rrcc/.

[12] IPv6 route database from the Chinese

CERNET BGP VIEW Project, available at:

http://bgpview.6test.edu.cn/bgp-view/.

[13] IPv4 route database from the IPMA Project (a

joint effort of the University of Michigan and

 12 J. Comp. Sci. & Tech.

Merit Network), available at:

http://www.merit.edu/ipma.

[14] IPv4 route database of the SD_NAP route

server (sd-nap-dmz.pch.net), available at:

http://archive.pch.net/archive/.

[15] RFC 2374: R. Hinden, M. O'Dell, S. Deering.

An IPv6 Aggregatable Global Unicast Address

Format. July 1998, available at:

ftp://ftp.ripe.net/rfc/rfc2374.txt

[16] RFC 2928: R. Hinden, S. Deering, R. Fink

and T. Hain, "Initial IPv6 Sub-TLA ID

Assignments", September 2000, available at:

ftp://ftp.ripe.net/rfc/rfc2928.txt

[17] RFC 3177: IAB, IESG, "IAB/IESG

Recommendations on IPv6 Address". September

2001, available at: ftp://ftp.ripe.net/rfc/rfc3177.txt

[18] RFC 3587: R. Hinden, S. Deering and E.

Nordmark, "IPv6 Global Unicast Address Format",

August 2003, available at:

ftp://ftp.ripe.net/rfc/rfc3587.txt.

[19] D.E. Taylor, J.S. Turner, “ClassBench: A

Packet Classification Benchmark”, Proc. of IEEE

INFOCOM 2005.

