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V6Gene: A Scalable IPv6 Prefix Generator for Route Lookup Algorithm 

Benchmarki 

 

Abstract-- Most conventional IPv4-based route lookup algorithms are no more suitable for IPv6 

packet forwarding due to the significantly increased 128-bit-long address. However, as a result of 

lacking of standard IPv6 route databases, it is hard to make benchmarks for the new generation 

IPv6-based algorithms developing/evaluation. In this paper, based on the studies of initial IPv6 

prefix distributions and the associated RFC documents, we originally develop a scalable IPv6 prefix 

generator, called V6Gene, for IPv6-based route lookup algorithms benchmarking. According to the 

RFCs and other associated standards, V6Gene generates IPv6 route prefixes from the initially 

assigned LIR (Local Internet Registries) prefixes collected from the real world, simulating the 

process of future IPv6 address block allocation from the LIRs to their subscribers. V6Gene is totally 

flexible for generation of all kinds of route databases with different characteristics. It is simple for 

implementation and can be easily integrated within other IPv6 benchmark tools/systems. V6Gene is 

publicly available at: http://zheng_kai.home4u.china.com/paper/V6Gen.rar 
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1 INTRODUCTION
i 

With the rapid development of the Internet 

applications and the explosion of the end users, the 

available IPv4 addresses that can be allocated are 

almost exhausted [1]. Though several approaches 
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have been made to temporally cope with the 

problem ， such as NAT (Network Address 

Translation), however due to its drawbacks of not 

well supporting peer-to-peer applications and with 

other security problems, it is widely/publicly 

believed that there should be a new generation of 

IP protocol to replace IPv4. IP Version Six (IPv6) 

then emerge as the times require. It adopts a 

128-bit address space, which provides about 296 

times of available addresses more than that of 
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IPv4. Besides that, IPv6 provides very good 

supports for mobility and information security as 

well. It also offers a better support for 

QoS-Control than that of its counterpart, since its 

packet header is far more flexible and can contain 

more detailed information for flow/application 

identification.  

However, the change of the protocol itself, 

especially the distinctively increased 128-bit 

address, on the other hand brings quite a lot of 

un-neglectable challenges for developing 

networking infrastructures based on IPv6. For 

instance, the performance of conventional route 

lookup algorithms (i.e., both trie-based algorithms 

[2][3][4][5] and TCAM-based schemes [6][7][8]) 

implemented in most current packet forwarding 

devices are sensitive to the search key (i.e., IP 

address) length, and, therefore, will distinctively 

decrease when migrated to IPv6. This means that a 

new generation of high performance route lookup 

algorithms based on IPv6 should be developed 

accordingly. 

Yet, the major concern of this paper is not the 

research of finding efficient route lookup 

algorithms itself, but to develop a scalable 

benchmarking tool for such algorithms 

developments. Notice that in order to develop a 

high performance and suitable route lookup 

algorithm for next generation high speed packet 

processing, one should first inspect the route 

databases and make use of the characteristics of 

the distribution, and then use the standard route 

databases for benchmark and evaluate the 

corresponding performance, as what most 

researchers have done when they developed IPv4 

route lookup algorithms [3] [4] [5] [6] [7] [8]. 

However, due to the following three reasons, 

almost no real-world route databases can be utilize 

for IPv6-based algorithm benchmark: 1) Since 

IPv6 is in its initiation period, only a small portion 

of address blocks are assigned/allocated up to now; 

2) The currently assigned blocks are mostly LIRs 

(Local Internet Registries, or Large ISPs) level 

blocks, which means that the current IPv6 prefix 

distribution should be quite different with its 

future pattern which contain mainly end subscriber 

level address blocks; 3) Most nowadays IPv6 

based networking are for testing or experiment, 

therefore, on the one hand relatively few 

organizations provide their IPv6 route databases 

for research, and on the other hand, though some 

of them share their route databases [10][12], the 

prefixes in such IPv6 route tables are somehow 

local, i.e., without universality for research 

purpose, such as benchmarking.  

D. E. Taylor developed a policy rules generation 
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tool, called ClassBench [19], for packet 

classification benchmarking. The basic 

observation is that although the real-world rule 

databases are always not publicly available due to 

security and confidentiality issues, the rule 

databases owners may just provide the 

corresponding profiles, called seed-files, of their 

rule sets instead of the confidential database. And 

then, based on such seed-files, the researcher may 

use ClassBench to re-generate similar rule set for 

benchmarking of classification algorithm 

development. 

In light of the idea of ClassBench, in this paper, 

by thoroughly studies on large amount of 

associated RFCs and other standards for IPv6, and 

analysis on the characteristics of both current IPv4 

prefix distribution and IPv6 initial prefix 

distribution, we develop a scalable IPv6 prefix 

generator, called V6Gene for route lookup 

algorithm benchmarking. IPv6 route prefixes are 

generated from real-world LIR level prefixes (i.e. 

the LIR level prefixes are treated as seed-prefixes), 

according to the configuration setup by the users. 

V6Gen is totally flexible and can be easily utilized 

in other IPv6 based integrated test bed or 

benchmark systems. 

The rest of the paper is organized as follows. 

Section II provides the definitions of the terms and 

parameters associated with the prefix generator. 

Section III presents the analysis and observation of 

the real world route databases and the studies of 

the IPv6-related RFCs and standards. Section IV 

presents the details of the prefix generator design. 

Then a conclusion is drawn in Section V. 

2 DEFINITIONS AND TERMS 

2.1 Definition: Trie, Prefix Node, Internal Node, 

Prefix Leaf 

A Binary Trie is introduced to represent the 

prefix space, with each node for a possible prefix. 

The prefix of a route table entry defines a path in 

the trie ending in some node, which is called the 

Prefix Nodes in this paper. If a node itself is not a 

prefix node but its descendants include prefix 

nodes, we call it an Internal Node. We name a 

prefix node as a Prefix Leaf if it has no 

descendants prefix nodes. 

Fig.1 depicts an example of the definitions 

introduced above. For simplicity we suppose that 

the address length is 7bits. 
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Fig 1. An example routing table and the corresponding binary trie built from it. 

2.2 Definition: Prefix Depth, Prefix Level 

Depth of a prefix (node) is defined as the 

number of its ancestor nodes in the prefix trie, and 

Depth(i) of the prefix trie denotes the set of all 

prefixes (node) with their depths equals i. Depth of 

a prefix node is actually the same of the length of 

the corresponding route prefix. For instance, in the 

example of Fig.1 the depths of prefix node A, D, 

and F are 0,4, and 6 respectively. 

For a given prefix node n, there may be multi 

paths from n to its multi descendant leaf nodes. 

Among these paths, let Pmax be the one containing 

the most prefix nodes. The number of prefix nodes 

(excluding node n itself) in Pmax is called the 

Prefix Level of prefix node n. And |Level(i)| 

denotes the number of prefixes (nodes) with their 

level equals i. It is actually a parameter 

representing the level of a specific subnet 

hierarchy. In the example of Fig.1 the level of 

prefix node A, D and F are 2, 0 and 1 respectively. 

And |Level(0)|=6, |Level(1)|=2, and |Level(2)|=1 .  

 

2.3 Definition: Random Generating Ratio 

(RGR), Generation Accuracy Tolerance (GAT) 

2.3.1 Random Generating Ratio (RGR).  

The prefix generation is a random process. As 

will be introduced in the latter sections, general 

speaking, the generator random generates IPv6 

prefixes from specific seed prefixes collected from 

real world, simulating the process of IPv6 address 

block assignments, e.g., from the LIRs to small 

subscribers. However notice that prefixes may also 

be allocated from certain newly assigned LIRs, so 

we also need to generate certain amount of IPv6 

prefixes without regarding to the seed prefix file. 

To make the generator flexible, we introduce the 

parameter RGR: RGR is defined as the ratio of the 

number of prefixes to be generated without 

regarding to the seed prefix file to the number of 

all prefixes to be generated. RGR represents the 
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degree of relation of the generated prefix table to 

the seed table. 

2.3.2 Generation Accuracy Tolerance (GAT).  

GAT is a vector, each sub-value of which is 

defined as the tolerance of variance between a 

specific parameter of generated route table and the 

one setup by the user. The generation outcomes 

should satisfy all constrains: 

iiii PSPSPGGAT /|| −≤ , where iPG  represents 

each of the parameters of the generated table, 

iPG  represents each of the parameters setup by 

the user. Such parameters include the number of 

prefixes to generate, the number of total next hop 

IP addresses in the table, etc. The reason of 

introducing GAT is that the generated outcome 

should satisfy more than one constrains setup by 

the user. Note that some of them may conflict with 

each others, so it can not be guaranteed that all 

parameters be achieved, exactly.  

3 FEATURES OF REAL-WORLD ROUTE PREFIX 

DISTRIBUTIONS  

3.1 Observation on Real-world IPv4 Prefix 

Distribution 

Study on IPv4 prefix distribution should be very 

helpful in estimating future IPv6 characteristics, 

because of two main considerations: 1) The 

topology of the Internet should not be largely 

altered during the migration from IPv4 to IPv6; 2) 

There are many things in common of IPv4 and 

IPv6 address block allocation/assignment.  

TABLE 1. Four real-world route tables. The SD_NAP table 
was a small one with no more than 4K prefixes; The 
Mae-West table from the IPMA project was a very famous 
table with middle-size; The Route-view and RRC06 tables 
are fairly large BGP tables in the real world. 

Name of Data Base Date Number of 
Prefixes 

Number of 
Next Hop 

Mae-West [13] 2001-03 33,960 45 
SD_NAP [14] 2001-06 3,935 2 
Route View [9] 2003-10 123,384 4 

RRC06 [11] 2003-11 131,372 35 

In what follows, we provide some observation 
on real-world IPv4 prefix distributions. In order to 
ensures that the characteristics discussed here are 
not specific to particular routers or time interval, 
we pick four typical route tables collected from 
four famous route service projects [9][11][13][14], 
which are both spatially and temporally widely 
distributed, as described in Table I. 

3.1.1 Distribution on Prefix Lengths and Prefix 
Depth 

As is shown in Fig. 2 (note the logarithmic scale 

on the y-axis), despite the elapse of time, the 

prefix length distributions keep a relatively stable 

form: The historical 24-bit Class C Prefix still 

dominates the number of entries (about 50% 

alone); the ratio of prefixes longer than 24-bit is 

very tiny (less than 1% in each of the four cases); 

over 90% of the prefixes are between 18-bit and 

24-bit. 
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Fig 2. Prefix distributions on prefix length. Please note the 
logarithmic scale on the y-axis. We find that the distribution 
is extremely uneven across the scope of prefix length and 
intervals. 

3.1.2 Distribution on Prefix Level 

Fig.3 depicts the distribution on prefix level. We 

can see that the ratio of prefix population 

decreases logarithmically with the growth of 

prefix level (note the logarithmic scale on the 

y-axis). Most real-world IPv4 route databases are 

with only five to six prefix levels and the majority 

(e.g., over 90%) of the prefixes are in Level 0 (i.e., 

they are prefix leaves). 

 
Fig 3. Prefix distributions on prefix level.  

3.2 IPv6 Prefix Characteristics 

  As is mentioned before, IPv6’s being in its 

initiation period leads to the relatively few number 

of available prefix databases that can be utilized 

for study [1]. And its current distribution should be 

quite different from its future patterns, according 

to our studies on the RFCs and other associated 

documents. In this sub-section, we first introduce 

the initial IPv6 prefix distribution characteristics, 

and then through a thorough survey of the 

associated RFCs [15-18] and RIPE documents [1], 

we estimate the “future-like” IPv6 prefix 

distribution and come to some useful conclusions 

for developing the IPv6 prefix generator. 

3.2.1 Current (initial) IPv6 prefix distribution. 

 
(a) On Length 

 
 (b) On Level 

Fig 4. Real-world (Initial) IPv6 prefix distribution. Please 
note the logarithmic scale on the y-axis.  

  Fig. 4(a) depicts the IPv6 prefix distribution on 

prefix length of a real-world IPv6 global route 

table (Route-View IPv6 route table, Data: 
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2004-10-3, Size: 680 Prefixesii. [10]). We can see 

that the majority are ‘/32’ prefixes, which is 

referred to as the "initial IPv6 allocation blocks" 

[1]. As mentioned in [1], this kind of IPv6 address 

blocks are allocated to the LIRs who: 1) plan to 

provide IPv6 connectivity to organizations to 

which it will assign '/48's by advertising that 

connectivity through its single aggregated address 

allocation; 2) have a plan for making at least 200 

‘/48’ assignments to other organizations within 

two years (the last information is essential for the 

IPv6 prefix generation, which will be introduced 

shortly). Some even shorter prefixes (length from 

16-31) were assigned to high-level subscribers 

according to RFC 2374[15] before it was replaced 

by RFC 3587 [18]. In RFC 2374 and RFC 2928 

[16], IPv6 address blocks were organized in a 

complex aggregatable hierarchy which includes 

the TLA (Top Level Aggregation) ‘/16’ blocks, 

sub-TLA blocks, NLA (Next Level Aggregation) 

‘/48’ blocks, SLA (Site Level Aggregation) ‘/64’ 

blocks and the Interface Level address ('/128').  

  Fig.4(b) depicts the IPv6 prefix distribution on 

prefix level, where is very similar to the cases of 

IPv4. And we can see that there are only four 

prefix levels (i.e., subnet levels). This information 

will be useful for V6Gene: A specific seed prefix 
                                                        
ii There are totally 6700 prefixes in the original database, however, 
only 680 of them are unique (since the database may contain 
identical route prefix announced by different source routers) . 

may have only 2-3 levels of children prefixes. 

3.2.2 Future IPv6 prefix distribution estimation 

  RFC 3578 (up-to-dated) replaces RFC 2374 and 

simplifies the aggregatable IPv6 address hierarchy. 

Now there are only three levels of prefixes: the 

Global Routing Prefix (4-48thbits. Note that the 

1-3thbits of IPv6 unicast address should be ‘001’), 

the Subnet ID (49-64th bits) and the Interface ID 

(65-128thbits). 

  According to RFC 3177 (IAB/IESG 

recommendation on IPv6 address allocation to 

sites) [17] and RIPE 267 [1], the IPv6 address 

blocks should be allocated to subscribes following 

these rules: 1) ‘/48’ in the general case, except for 

very large subscribes, which could receive a ‘/47’ 

or multiple ‘/48s’; 2) ‘/64’ when it is known that 

one and only one subnet is needed by design; 3) 

‘/128’ when it is ABSOLUTELY known that one 

and only one device is connecting. Also defined by 

RFC 3177, "the middle 16 bits (i.e., 49-64th bit) of 

an address indicate the subnet ID", since "the 

operational benefits of a consistent width subnet 

field were deemed to be outweigh the drawbacks" 

[1]. This shows that a standard '/48s' address block 

can be 'subnetted' into at most 16 levels, indicating 

the subnet/prefix levels of practical IPv6 route 

table will not be large. Note that there are even 

more subnet levels under the CIDR IPv4 address 
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allocation scheme, where the subnet ID may cover 

from the 9th to 30th bit of the address. 

  From the related recommendation of RFCs and 

RIPE documents introduced above, we come to 

some useful conclusions as follows, which may be 

very useful for developing the prefix generator or 

making a decision of parameter setup:  

i. It is obvious but important that there is no 

prefix with length between 64bit and 128bit 

(excluding 64bit and 128bit).  

ii. The majority of the prefixes should be the 

‘/48s’, and ‘/64s’ the secondary majority. Other 

prefixes would be distinctly fewer than the ‘/48s’ 

and ‘/64s’.  

  iii. Future (or the near future) IPv6 address 

blocks will be allocated to common subscribers 

mainly from the current assigned LIRs. This is 

essential for IPv6 prefix generating. 

  iv. Though the address length is increase, the 

levels of subnet/prefix would not be distinctively 

scaled (e.g. only 4-5 levels), due to consistent 

width subnet field. 

 

4. V6GENE: THE IPV6 PREFIX GENERATOR 

4.1 The Overall Processing Flow of V6Gene 

 
Fig 5. The processing flow of the prefix generator. 
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Given the number of prefixes to be generate, the 

distribution on prefix length/level and the GAT 

allowed, the program run iteratively as the 

alteration of generation and modification, until the 

constrains are all satisfied. 

  Notice that part of the prefixes is generated 

randomly, which means they are generation 

without regarding the seed file. A mergence of the 

two outcomes should be employed, including a 

process to remove the redundant/invalid prefixes. 

4.2 Details of V6Gene 

4.2.1 Initiation  

In this step, V6Gene will read in all the 

configurations, including all the associated 

parameters (i.e., number of prefixes, number of 

distinct next-hop, and RAR), distribution 

objectives (i.e., distributions on prefix length and 

prefix level), generating constrains (i.e., GAT), 

and the seed prefix file. Then V6Gene will first 

check the seed database and prune the 

invalid/redundant information (i.e., only keep the 

unique LIR prefixes), for instance as mentioned 

before, the seed prefix database collected from 

certain providers may contain identical prefixes 

announced by different sources. After that, based 

on the seed file, V6Gene will construct a binary 

trie, called the Seed Prefix Trie (SPT), which will 

be utilized in the later steps. 

4.2.2 Generating  

In this step, V6Gene will simulate the IPv6 

block allocation process, which includes two 

parallel phases:  

One is the simulation of address blocks 

allocation from the LIRs to the ordinary 

subscribers. V6Gene traverse the SPT: whenever 

come to a seed prefix leaf, it will trigger the 

generation function. This function generates a 

specific number of prefixes (indicated by the 

parameter RGR) according to the given 

distribution on prefix length and prefix levels; all 

the generated prefixes should have a same prefix, 

i.e., the seed prefix. Then the function will 

randomly assign forwarding information to each 

prefix generated. Such information includes the 

forwarding output port#, next hop IP addresses, 

and so on. 

The other phase is the random generation, which 

is actually to simulate the process of IPv6 block 

allocation from new LIRs (which do not currently 

exist) to their subscribers. In this phase, a specific 

number of prefixes (indicated by the parameter 

RGR) will be generated without regarding to the 

seed prefix file. Two sub-steps are included: First 

to randomly generate LIR level prefixes, and then 

to generate subscriber level prefix from them.  

As mention before, a verification of the 
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outcomes will be deployed after the generations, 

to make sure that all the prefixes are unique and 

with proper forwarding information. It is obvious 

that some of the generated prefixes may be 

removed in the verification process, and this may 

lead to dissatisfaction of certain constrains, such 

as the number of prefixes, etc. So another task of 

the random generation phase is to make up for 

such dissatisfaction by additionally generating a 

number of prefixes. In V6Gene, generation, 

verification and adjustment are triggered 

iteratively, until all constrains are well satisfied. 

4.2.3 Outputting 

  In this step, V6Gene will collect all the 

generated results and output them in compatible 

format (with the seed prefix file, e.g., the 

Route-View format [10] ). 

4.3 Some Discussions 

  1) V6Gene is totally flexible and scalable. 

Given different seed prefix sets, or configured 

with different distributions or constrains, it can 

generate route prefix table with different scale or 

for different applications (e.g., for core level 

routes with large BGP table or access level ones 

with RIP table).  

  2) For target distribution setup, the user may 

refer to those collected from the IPv4 real-world 

databases and estimated according to the RFCs. 

They may also create their specific target 

distribution. 

  3) We implement V6Gene on a 1.8GHz Intel 

Pentium IV-m laptop. The result shows that it 

takes only a few (<10) seconds to generate (and 

verify) over 130,000 IPv6 prefixes. This indicates 

that the iteration within the process converges fast. 

  4) All the inputs and outputs (i.e., interface) of 

V6Gene are files, which shows that it can be 

easily adopted to collaborate with other algorithm 

evaluation tools or integrated within a IPv6 

benchmark system. 

5 CONCLUSION AND ONGOING WORKS 

  In this paper, based on the studies of real-word 

prefix distributions and the associated RFC 

documents, we develop a scalable IPv6 prefix 

generator, called V6Gene. Due to the insufficiency 

of available real-world IPv6 route databases, 

V6Gene would be very useful for providing 

reliable and flexible benchmark for future IPv6 

based application designing, e.g. IPv6 route 

lookup algorithms. V6Gene generates IPv6 route 

prefixes from the LIR prefixes collected from the 

real-world, simulating the process of IPv6 address 

block allocation from the LIRs to their subscribers. 

It is totally scalable, simple for implementation, 

and can be easily integrated within other IPv6 
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benchmark system. 

  The major ongoing researches of this work 

includes 1) to extend V6Gene to make it support 

more target distributions and parameters for 

generation; 2) to extend V6Gene to make it 

support policy rule generation, which would be 

useful for IPv6 based packet classification 

benchmark. 
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